paralleldomain.utilities.transformation
- class Transformation(quaternion=None, translation=None)
Multi-purpose 6DoF object.
When printed, the rotation is given as euler angles in degrees following intrinsic rotation order XYZ, rounded to 2 decimal places.
- Parameters:
quaternion (
Union
[Quaternion
,List
[float
],ndarray
,None
]) – Quaternion instance or elements for rotation. Elements are expected in order (w,x,y,z). Default: Unit quaternion without rotation.translation (
Union
[ndarray
,List
,None
]) – List-like translation information in order (x,y,z). Default: [0,0,0]
Example
Transformation instances can be easily matrix-multiplied with other Transformation instances or any np.ndarray of shape (4,n).
lidar_frame = ... # get any `SensorFrame` from a LiDAR sensor points_vehicle_frame = (lidar_frame.extrinsic @ lidar_frame.xyz_one.T).T points_world_frame = (lidar_frame.pose @ lidar_frame.xyz_one.T).T boxes_3d = lidar_frame.get_annotations(AnnotationTypes.BoundingBoxes3D) for b in boxes_3d.boxes: box_pose_world_frame = lidar_frame.pose @ b.pose
- as_euler_angles(order, degrees=False)
Returns the rotation of a Transformation object as euler angles.
- Parameters:
order (
str
) – Defines the axes rotation order. Use lower case for extrinsic rotation, upper case for intrinsic rotation. Ex: xyz, ZYX, xzx.degrees (
bool
) – Defines if euler angles should be returned in degrees instead of radians. Default: False
- Return type:
ndarray
- Returns:
Ordered array of euler angles with length 3.
- classmethod from_euler_angles(angles, order, translation=None, degrees=False)
Creates a transformation object from euler angles and optionally translation (default: (0,0,0))
- Parameters:
angles (
Union
[ndarray
,List
[float
]]) – Ordered euler angles array with length 3translation (
Union
[ndarray
,List
[float
],None
]) – Translation vector in order (x,y,z). Default: [0,0,0]order (
str
) – Defines the axes rotation order. Use lower case for extrinsic rotation, upper case for intrinsic rotation. Ex: xyz, ZYX, xzx.degrees (
bool
) – Defines if euler angles are provided in degrees instead of radians. Default: False
- Return type:
- Returns:
Instance of
Transformation
with provided parameters.
- classmethod from_transformation_matrix(mat, approximate_orthogonal=False)
Creates a Transformation object from an homogeneous transformation matrix of shape (4,4)
- Parameters:
mat (
ndarray
) – Transformation matrix as described intransformation_matrix
approximate_orthogonal (
bool
) – When set to True, non-orthogonal matrices will be approximate to their closest orthogonal representation. Default: False.
- Return type:
- Returns:
Instance of
Transformation
with provided parameters.
- classmethod interpolate(tf0, tf1, factor=0.5)
Interpolates the translation and rotation between two Transformation objects.
- For translation, linear interpolation is used:
tf0.translation + factor * (tf1.translation - tf0.translation). For rotation, spherical linear interpolation of rotation quaternions is used: tf0.quaternion * (conjugate(tf0.quaternion) * tf1.quaternion)**factor
- Parameters:
tf0 (
Transformation
) – First Transformation object used as interpolation starttf1 (
Transformation
) – Second Transformation object used as interpolation endfactor (
float
) – Interpolation factor within [0.0, 1.0]. If 0.0, the return value is equal to tf0; if 1.0, the return value is equal to tf1. Values smaller than 0.0 or greater than 1.0 can be used if extrapolation is desired. Default: 0.5
- Return type:
- Returns:
A new Transformation object that is at the interpolated factor between tf0 and tf1.
- static look_at(target, coordinate_system, position=None)
Calculates the pose transformation of being located at the given positions and looking at the given target. :type target:
Union
[ndarray
,List
[float
]] :param target: The position to look at :type coordinate_system:str
:param coordinate_system: The coordinate system the result, target and position are in :type position:Union
[ndarray
,List
[float
],None
] :param position: the position to look from- Return type:
- Returns:
Instance of
Transformation
looking from position to target- Parameters:
target (ndarray | List[float]) –
coordinate_system (str) –
position (ndarray | List[float] | None) –
- property inverse: Transformation
Returns the inverse transformation as a new
Transformation
object.
- property quaternion: Quaternion
Returns the rotation as a
pyquaternion.quaternion.Quaternion
instance.Full documentation can be found in pyquaternion API Documentation.
To get the quaternion coefficients, either call .elements, iterate over the object itself or use the dedicated named properties. The element order (until explicitly stated otherwise) should always be assumed as (w,x,y,z) for function w + xi+ yj + zk
from paralleldomain.model.transformation import Transformation tf = Transformation.from_euler_angles(yaw=90, pitch=0, roll=0, is_degrees=True) assert(tf.quaternion.elements[0] == tf.quaternion[0] == tf.quaternion.w) assert(tf.quaternion.elements[1] == tf.quaternion[1] == tf.quaternion.x) assert(tf.quaternion.elements[2] == tf.quaternion[2] == tf.quaternion.y) assert(tf.quaternion.elements[3] == tf.quaternion[3] == tf.quaternion.z)
Please note that when using
scipy.spatial.transform.Rotation
, scipy assumes the order as (x,y,w,z).from paralleldomain.model.transformation import Transformation from scipy.spatial.transform import Rotation import numpy as np tf = Transformation.from_euler_angles(yaw=90, pitch=0, roll=0, is_degrees=True) tf_scipy = Rotation.from_quat([ tf.quaternion.x, tf.quaternion.y, tf.quaternion.z, tf.quaternion.w ]) # Check that rotation quaternion is equal within tolerance np.allclose(tf.rotation == tf_scipy.as_matrix()) # returns True
- property rotation: ndarray
Returns the rotation matrix in shape (3,3).
/ \ |R_11 R_12 R_13| |R_21 R_22 R_23| |R_31 R_32 R_33| \ /
- property transformation_matrix: ndarray
Returns the homogeneous transformation matrix in shape (4,4).
/ \ |R_11 R_12 R_13 t_x| |R_21 R_22 R_23 t_y| |R_31 R_32 R_33 t_z| |0 0 0 1 | \ /
- property translation: ndarray
Returns the translation vector (x,y,z) in shape (3,).